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Abstract. In the numerical simulation of many practical problems in physics and engineering, finite volume
methods are an important and popular class of discretization methods due to the local conservation and the capability
of discretizing domains with complex geometry. However they are limited by low order approximation since most
existing finite volume methods use piecewise constant or linear function space to approximate the solution. In this
paper, a new class of high order finite volume methods for second order elliptic equations is developed by combining
high order finite element methods and linear finite volume methods. Optimal convergence rate in H1-norm for our
new quadratic finite volume methods over two dimensional triangular or rectangular grids is obtained.
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1. Introduction. In this paper, we shall develop a new class of high order finite volume
methods for solving the second order elliptic equation:

−∇ · (K(x)∇u) = f for all x ∈ Ω ⊂ Rn, (1.1)

with appropriate Dirichlet or Neumann boundary condition. The diffusion coefficient K(x)
is a symmetric and positive definite n× n matrix function satisfying

0 < a0|ξ|2 ≤ ξtK(x)ξ ≤ a1|ξ|2 <∞ for all x ∈ Ω and ξ ∈ Rn. (1.2)

It is well known that the smoothness requirement of the classic solution to (1.1), i.e., u ∈
C2(Ω), excludes interesting solutions for many physical problems.

The weak solution of (1.1) is a function u ∈ H1
0 (Ω) such that∫

Ω

(K∇u) · ∇v dx =
∫

Ω

fv dx for all v ∈ H1
0 (Ω). (1.3)

Here, to fix ideas, we consider the homogenous Dirichlet boundary condition, i.e., u|∂Ω = 0
and f ∈ L2(Ω). The existence and uniqueness of the weak solution can be easily established
by the Lax-Milligram lemma. Restriction of the weak formulation (1.3) to finite element
subspaces of H1

0 (Ω) leads to finite element methods (FEMs) which are flexible to deal with
complex domains and various boundary conditions. Furthermore, the theory on the conver-
gence of finite element methods is well established. The main drawback of FEM might be the
loss of the local conservation property which can be fundamental for the simulation of many
physical models, e.g., in computational fluid dynamics.

To derive discretization methods with local conservation property, we note that many
physical models can be written as the following balance equation [18]

−
∫
∂b

(K∇u) · ndS =
∫
b

f dx for all b ⊂ Ω. (1.4)

The discretization of (1.4) by choosing an appropriate finite element space V to approximate
u and a finite number of sub-domains b, the so-called control volume, will be called finite
volume methods (FVMs).
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Since FVM discretizes the balance equation (1.4) directly, an obvious virtue is the local
conservation property which is not the case for FEM. On the other hand, FVM inherits the
intrinsic geometric flexibility of FEM and thus is more flexible than standard finite difference
methods which mainly defined on structured grids of simple domains.

One of the main limitation of FVM is the low approximation order. For most existing
finite volume methods, the space V is either a piecewise constant or a linear finite element
spaces. Few work [23, 22, 8, 29, 25] is devoted to high order finite volume methods. Among
them, a systematic way of deriving high order finite volume methods is presented in [25] for
one dimensional elliptic problems and in [8] for cell-centered finite volume methods over
rectangular grids.

We shall propose a new class of vertex-centered high order FVM by mixing the dis-
cretization of the balance equation (1.4) and the weak formulation (1.3). Our new method
can be thought as a hybridization of high order finite element methods and a linear finite
volume method. More precisely, we shall first formulate (1.4) into a Petrov-Galerkin formu-
lation, by translating the left hand side of (1.4) into a bilinear form involving different trial and
test function spaces. Then we design new high order finite volume methods by the following
choices of trial and test spaces. Given a triangulation T of Ω, the trial space will be chosen
as kth-order finite element space Vk,T in which the function u is approximated. A novelty
of our new method is on the choice of the test space. Using the hierarchical decomposition
Vk,T = V1,T ⊕Wk,T , where V1,T is the linear finite element space, the test space will be
chosen by replacing V1,T by V0,B, a piecewise constant function space on a dual mesh B.

The error analysis is not easy for arbitrary orders since the stability (or in general the inf-
sup condition) for the resulting algebraic system is difficult to establish. In this paper we only
obtain inf-sup condition for quadratic finite volume methods on two dimensional triangular
grids (assuming the geometry of the mesh is not too extreme) and rectangular grids. Optimal
rate of convergence in H1-norm is then obtained following the framework of Xu and Zou
[29]. Due to the hierarchical structure of the trial and test spaces, our analysis is simplified to
the verification of the positive semi-definiteness of the symmetrization of the local stiffness
matrix in each element.

Note that existing quadratic finite volume methods [23, 22, 29] require control volumes
for all basis of the trial space. While in our new method, we only need to choose control
volumes for vertices of the triangulation. This will simplify the geometry of control volumes
and in turn simplify the implementation and analysis. Indeed we shall show whenK is piece-
wise constant, the resulting matrix equation is different from that of standard finite element
methods only in one small block. Thus we can make use of vast existing finite element codes
to easily implement our new method.

The rest of this paper is organized as follows. In Section 2, we present finite volume
methods including our new class of high order finite volume methods. In Section 3, we give
general error analysis of our methods. In Section 4, we study new quadratic finite volume
methods in detail on triangular and rectangular grids in one and two dimensions. In Section
5, we present a numerical example to show the effectiveness of our methods. In the last
section, we summarize our results and outline future work.

2. Finite volume methods. In this section, we shall present a general form of finite
volume methods and give two examples: cell-centered and vertex-centered FVMs. We then
formulate the vertex-centered FVM into a Petrov-Galerkin method and develop high order
schemes using different choices of trial and test spaces.

2.1. General form of finite volume methods. Finite volume methods are discretiza-
tions of the balance equation (1.4) consisting of three approximations:

1. approximate the function u by uh in an N -dimensional subspace V;
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2. approximate “arbitrary domain b ⊂ Ω” by a finite subset B = {bi, i = 1 : M};
3. approximate boundary flux (K∇u) · n on ∂bi by a discrete one (K∇huh) · n.

We then end up with a method: find uh ∈ V such that:

−
∫
∂bi

(K(x)∇huh) · n dS =
∫
bi

f dx for all bi ⊂ Ω, i = 1 : M. (2.1)

We call any method in the form (2.1) finite volume methods (FVMs).
Usually B forms a partition of Ω or an approximation Ωh of Ω such that we have local

conservation property on each bi and thus the whole domain Ω or Ωh by linear composition of
control volumes. Furthermore V and B should be chosen so that the resulting matrix equation
is solvable. We shall give two examples below.

Example 1: Cell-centered finite volume method. Let T be a triangular or rectangular
grid of Ω. We choose the finite dimensional space V = {v ∈ L2(Ω) : v|τ is constant }. Then
dim V = N , the number of elements of T . We also choose B = T .

Since a control volume is an element (also called cell) of the mesh and the unknown is
associated to each cell, it is often called cell-centered finite volume methods or cell-centered
difference methods.

The boundary flux of each element can be approximated in a finite difference fashion.
Theory and computation along this approach are summarized in the book [19]. Another
approach to discretize the boundary flux is through mixed finite element methods. Optimal
error estimate can be easily obtained by using that of mixed finite element methods [26].

Deriving high order finite volume methods from mixed finite element methods is a
promising approach since theories on mixed methods are well established [5]. We refer to
[8] for high order cell-centered finite volume methods over rectangle grids. However, the
derivation on general unstructured triangulation is still open. Partially it is due to the loss of
symmetry and good numerical quadrature for simplicial grids.

Example 2: Vertex-centered finite volume method. We now discuss another popular
choice of V and B. To fix ideas, we consider two dimensional triangular grids and homoge-
nous Dirichlet boundary condition. We refer to [29] for a general treatment on simplicial
grids in any dimensions.

Let Ω ⊂ R2 be a polygon and let T be a triangulation of Ω. Denoted by V1,T the linear
finite element spaces of H1

0 (Ω) based on T :

V1,T = {v ∈ H1
0 (Ω) : v|τ ∈ P1(τ), ∀ τ ∈ T },

where Pk(τ) is the kth order polynomial space on τ . We shall choose V = V1,T . The
dimension N = dim V is the number of interior vertices of T .

The control volume will be given by another mesh B̄ = {bi, i = 1, · · · ,M} satisfying

Ω̄ = ∪Mi=1bi, and
◦
bi ∩

◦
bj= ∅ for all 1 ≤ i, j ≤M and i 6= j.

To reflect to the Dirichlet boundary condition, we set

B = {bi ∈ B̄, bi ⊂
◦
Ω}.

Obviously for Neumann boundary condition, we should use B̄. The control volume bi is not
necessary to be polygons. But for practical reasons, each bi is chosen as a polygon so that the
boundary integral is easy to evaluate.
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Note that for a function u ∈ V1,T , the flux (K∇u) · n is not well defined on the edges
of triangles. Therefore we further require that

(∂bi ∩ τ) ⊂ ◦τ for all bi ∈ B and τ ∈ T .

We then get a natural approximation (K∇uh) · n of the flux (K∇u) · n on ∂bi since u|τ is
a polynomial.

Given a triangulation T , one popular construction of B̄ is given as follows: for each
triangle τ ∈ T , select a point cτ ∈ τ . The point cτ can coincide with one of the middle points
of edges, but not the vertices of triangles (to avoid the degeneracy of the control volume). In
each triangle, we connect cτ to three middle points on the edges of τ . This will divide each
triangle in T into three regions. For each vertex xi of T , we collect all regions containing
this vertex and define it as bi. In Figure 2.1 we draw the control volume for interior vertices
since the unknown is associated to interior vertices only.

The classical choices of the point cτ include the circumcenter and the barycenter. When
cτ is chosen as the circumcenter of τ , the edges of control volumes will be orthogonal to
the intersected edges of triangles, and if the mesh T is a Delaunay triangulation, B will be a
Voronoi diagram. When cτ is the barycenter of τ , then τ will be divided into three parts with
equal areas. This symmetric property is important to get optimal L2 convergence rate for the
FVMs [20]. In this paper, we shall consider the choice of cτ of the following two types:

• Type A: cτ is the barycenter of τ .
• Type B: cτ is the middle point of the longest edge

Type A is preferable for triangulations composed by equilateral triangles and type B is better
for right triangles; See Figure 2.1. We shall call B a dual mesh of T .

1

(a) Type A

1

(b) Type B

FIG. 2.1. Two types of meshes and dual meshes. The gray area is the control volume of interior nodes. Type
A: the point cτ is the barycenter of τ . Type B: the point cτ is the middle point of the longest edge.

Since we associate control volumes and unknowns to vertices, it is called vertex-centered
finite volume method. It is also known as box method [28, 3, 20] (since the control volume is
called box in these work), and finite volume element methods [9, 10, 7, 21] (to emphasis the
approximation of u is in a finite element space).

2.2. Petrov-Galerkin formulation. We shall follow Bank and Rose [3] to formulate
the vertex-centered linear finite volume method as a Petrov-Galerkin method.

We first introduce a function space defined on control volumes. Let B be the dual mesh
of a triangulation T constructed in the previous subsection. We define a piecewise constant
function space on B by:

V0,B = {v ∈ L2(Ω) : v|bi
= constant , for all bi ∈ B}. (2.2)

The set of interior edges of the mesh B is denoted by E(B). For each e ∈ E(B), we shall fix a
unit normal direction ne of e. Suppose e is shared by two control volumes bi and bj . Without
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loss of generality, we assume the outward normal direction of e in bi coincides with ne. For
any function v ∈ V0,B, the jump of v across e is denoted by [v] = v|bi

− v|bj
.

We define a bilinear form on V1,T × V0,B as

ā(u, v) = −
∑

e∈E(B)

∫
e

(K∇u) · ne[v] dS for all u ∈ V1,T , v ∈ V0,B, (2.3)

and formulate the linear finite volume method as: find ū ∈ V1,T such that

ā(ū, v) = (f, v) for all v ∈ V0,B. (2.4)

REMARK 2.1. For Neumann boundary condition, we shall choose

V1,T = {v ∈ H1(Ω) : v|τ ∈ P1(τ) for all τ ∈ T }, and

V0,B = {v ∈ L2(Ω) : v|bi
= constant for all bi ∈ B̄}.

For e ∈ ∂bi ∩ ∂Ω, the flux (K∇u) · ne will be given by the boundary condition. Other type
of boundary conditions can be built into the finite element space or the weak formulation.
All algorithms and analysis in this paper can be applied to these boundary conditions in a
straightforward way. �

We now show a close relation between the linear finite element method and the linear
finite volume method. Let a(u, v) be the bilinear form

a(u, v) =
∫

Ω

(K(x)∇u) · ∇v dx. (2.5)

The linear finite element method is: find uL ∈ V1,T such that

a(uL, v) = (f, v) for all v ∈ V1,T . (2.6)

To see the close relation, we formulate the corresponding matrix equations for (2.4) and
(2.6). Let N (T ) be the set of interior nodes of T and N = #N (T ). Then dim V0,B =
dim V1,T = N . A basis of V0,B can be chosen as the characteristic function of each bi, i =
1, · · · , N :

ψi = χbi(x) =

{
1 x ∈ bi,
0 otherwise .

The nodal basis of linear finite element space V1,T is the standard hat function:

φi ∈ V1,T , φi(xj) = δij for all xj ∈ N (T ), i = 1, · · · , N.

Let ū =
∑N
j=1 Ūjφj . Choosing v = ψi, i = 1, · · · , N in (2.4), we obtain a linear algebraic

equation

ĀŪ = F̄ , (2.7)

with Āij = −
∫
∂bi

(K∇φj) ·n, F̄i =
∫
bi
fdx. Let uL =

∑N
j=1 Ujφj . Choosing v = φi, i =

1, · · · , N in (2.6), we obtain another linear algebraic equation

AU = F, (2.8)
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with Aij =
∫

Ω
(K∇φj) · ∇φi, Fi =

∫
Ω
fφidx.

It is well known that whenK(x) is piecewise constant on each triangle, thenA = Ā; See
[3, 20, 29]. The solution vectors are point values for uL and ū at vertices. The only difference
is the different way to compute the right hand side. For FEM, Fi =

∫
Ωi
fφi dx, is a weighted

average over the star Ωi of a vertex, i.e., the support of φi. For FVM, F̄i =
∫
bi
f dx is the

average over the control volume bi. When we choose type A control volume, i.e. choosing cτ
to be the barycenter of τ , F̄i can be thought as an approximation of Fi using mass lumping.
In this sense, linear FVM approximation ū can be thought as a perturbation of the linear FEM
approximation uL. First order optimal convergence rate in the energy norm can be obtained
using this relation [3, 20].

Note that the right hand sides may be quite different for type B dual mesh. For exam-
ple, let f = 1 and consider the control volume in Figure 2.1(b). Then Fi = |Ω|/3 while
F̄i = |Ω|/4. Nerveless optimal first order convergence in H1 norm can still be derived by
comparing them in the discrete H−1 norm [20]. Optimal second order convergence in L2-
norm holds for type A dual mesh [20] but not type B dual mesh [21].

2.3. High order finite volume method. The Petrov-Galerkin formulation can be used
to develop high order finite volume methods. Given a triangulation T of Ω and an integer
k ≥ 1, we shall choose the trial space as

Vk,T = {v ∈ H1
0 (Ω) : v|τ ∈ Pk(τ), ∀ τ ∈ T }. (2.9)

To construct the test function space, the traditional way is to introduce a control volume
for each basis of Vk,T [22, 23, 29]. For example, for quadratic finite element space, in addi-
tion to the control volumes of vertices, control volumes for middle points of edges of T are
needed. The geometry of the control volumes will complicate the analysis and implementa-
tion of high order FVMs especially on unstructured triangular grids.

We shall propose a new choice of the test function space based on the hierarchical de-
composition of Vk,T :

Vk,T = V1,T ⊕Wk,T , (2.10)

where recall that V1,T is the linear finite element space, and Wk,T is spanned by the hierar-
chical basis function up to order k by excluding linear basis. For example, for quadratic finite
element space, W2,T consists of quadratic bubble functions on interior edges of T .

Let B be the dual mesh of T used in the linear FVM. We shall choose the test function
space as

Vk,B := V0,B ⊕Wk,T , (2.11)

where V0,B is the piecewise constant function defined on B; see (2.2). Obviously Vk,B ⊂
L2(Ω) and V0,B is linearly independent with Wk,T .

Our kth-order order FVM is: given f ∈ L2(Ω), find u ∈ Vk,T such that

ā(u, v) = (f, v) for all v ∈ V0,B, and (2.12)
a(u, v) = (f, v) for all v ∈Wk,T , (2.13)

where recall that ā(u, v), a(u, v) are bilinear forms defined in (2.3) and (2.5), respectively.
Let us compare our kth-order finite volume method with standard kth-order finite el-

ement methods. Using hierarchical decomposition (2.10), we can rewrite finite element
method in the following form: given f ∈ L2(Ω), to find u ∈ Vk,T

a(u, v) = (f, v) for all v ∈ V1,T , and (2.14)
a(u, v) = (f, v) for all v ∈Wk,T . (2.15)
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Therefore our method can be thought as a hybridization of high order finite element
methods (2.15) and a linear finite volume method (2.12). By choosing v = ψi = χbi

in
(2.12), we get local conservation property on bi, which also leads to a global conservation
property by linear composition of control volumes. On the other hand, we are looking for the
solution in the finite element space Vk,T which could give high order approximation as that
in finite element methods.

We now formulate (2.12)-(2.13) and (2.14)-(2.15) as operator equations. Let X ′ denote
the dual of a space X and 〈·, ·〉 the duality pair. We define the following operators introduced
by the bilinear form ā(·, ·) or a(·, ·).

Ā : V1,T → V′0,B for u ∈ V1,T , 〈Āu, v〉 = ā(u, v) for all v ∈ V0,B,

A : V1,T → V′1,T for u ∈ V1,T , 〈Au, v〉 = a(u, v) for all v ∈ V1,T ,

B : V1,T →W′k,T for u ∈ V1,T , 〈Bu, v〉 = a(u, v) for all v ∈Wk,T ,

Bt : Wk,T → V′1,T for u ∈Wk,T , 〈Btu, v〉 = a(u, v) for all v ∈ V1,T ,

C : Wk,T → V′0,B for u ∈Wk,T , 〈Cu, v〉 = ā(u, v) for all v ∈ V0,B,

D : Wk,T →W′k,T for u ∈Wk,T , 〈Du, v〉 = a(u, v) for all v ∈Wk,T .

For any v ∈ Vk,T or Vk,B, let us split it as v = v1 + v2 with v1 ∈ V1,T or V0,B, respectively,
and v2 ∈Wk,T . Given an f ∈ L2(Ω), we define f1, f̄1 ∈ V1,T and f2 ∈Wk,T as follows

(f1, v) = (f, v) for all v ∈ V1,T ,

(f̄1, v) = (f, v) for all v ∈ V0,B,

and (f2, v) = (f, v) for all v ∈Wk,T .

Then the kth-order FVM (2.12)-(2.13) can be written as: find ū = ū1 + ū2 ∈ Vk,T such
that [

Ā C
B D

] [
ū1

ū2

]
=
[
f̄1

f2

]
(2.16)

and kth-order FEM (2.14)-(2.15) is: find u = u1 + u2 ∈ Vk,T such that[
A Bt

B D

] [
u1

u2

]
=
[
f1

f2

]
, (2.17)

Let φi, ψi, i = 1, · · ·NL still denote the basis of V1,T and V0,B, respectively. We choose
a basis of Wk,T as {ωi, i = 1, · · · , NW }. Then there are isomorphisms

PT : RNL+NW → Vk,T with PT (U1, U2) =
NL∑
i=1

U1
i φi +

NW∑
i=1

U2
i ωi (2.18)

PB : RNL+NW → Vk,B with PB(U1, U2) =
NL∑
i=1

U1
i ψi +

NW∑
i=1

U2
i ωi. (2.19)

With this identification, (2.16) and (2.17) can be also understood as linear algebraic equa-
tions. For the simplicity of notation, we shall still use the same letter of the operator for its
corresponding matrix representation. This should not be a source of confusion.

When K(x) is piecewise constant, in matrix form, A = Ā, the system (2.16) is simply
replacing Bt in (2.17) by C which make the system non-symmetric.

The big system (2.17) for FEM is symmetric and positive definite and thus ensures the
existence and uniqueness of the solution. The stability and accuracy of our new kth-order
FVM will be studied in the next section.
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3. Error Analysis of finite volume methods. We shall analyze our method using the
framework of Petrov-Galerkin methods as pioneered in Bank and Rose [3] and developed in-
dependently by Chinese mathematicians Li et al.; see the book [22] and the reference therein.
Here we shall mainly follow a recent work of Xu and Zou [29]. The special hierarchical
structure of our methods will simplify the verification of the inf-sup condition.

In the sequel, we are considering a set of triangulations T = {Th, h ∈ H} with the
parameter h → 0. We assume T is shape regular in the sense of [16]. The parameter h has
meaning of the maximal diameter of triangle in Th. When T is quasi-uniform in the sense of
[16], h is a good measurement of the convergence rate.

For simplicity, the analysis is restricted to the Poisson equation, i.e. K(x) = 1. Conse-
quently A = Ā. Our analysis can be easily generalized to the case when K(x) is piecewise
constant in each element of T . See Remark 3.4 and 4.3.

3.1. Mesh dependent norms and continuity. We first assign norms on Vk,T and Vk,B,
and prove the continuity of the bilinear form ā(·, ·) with respect to these norms.

Since the space Vk,T ⊂ H1
0 (T ), H1 semi-norm is a natural choice. But the bilinear

form ā(·, ·) involves line integrals of u, an additional smoothness on u is required. Given a
triangulation T , we shall consider the space

H1
0 (Ω) ∩H2

T (Ω) = {u ∈ H1
0 (Ω) : u|τ ∈ H2(τ) for all τ ∈ T },

endowed with a mesh dependent semi-norm

|u|1,T =

[∑
τ∈T

(
|u|21,τ + h2

τ |u|22,τ
)]1/2

,

where hτ = diam(τ) is the size of the element τ . Obviously

|u|1 ≤ |u|1,T for all u ∈ H1
0 (Ω) ∩H2

T (Ω).

Consequently, by the Poincáre inequality, | · |1,T is a norm for the spaceH1
0 (Ω)∩H2

T (Ω) and
its subspace Vk,T . By the inverse inequality for finite element functions, we also have

|u|1,T ≤ C|u|1 for all u ∈ Vk,T , (3.1)

with a constant C depending only on the shape regularity of T and the polynomial degree k.
The piecewise constant space V0,B * H1

0 (Ω), thus we need to define a discrete “H1

norm”. With an appropriate scaling, we use the following mesh dependent semi-norm

|u|1,B =

 ∑
e∈E(B)

[u]2

1/2

=

 ∑
e∈E(B)

h−1
e

∫
e

[u]2

1/2

, (3.2)

where he = diam(e) is the size of e. Note that the control volumes intersect the boundary
∂Ω is not included in B or equivalently for v ∈ V0,B, v|bi = 0 if bi ∩ ∂Ω 6= ∅. Based on
this observation, it is easy to show | · |1,B defines a norm on V0,B. See, for example, [4] for a
Poincaré type inequality for discontinuous function space.

For u = u1 + u2 ∈ Vk,B, u1 ∈ V0,B and u2 ∈Wk,T , we define a norm

|u|1,B =
(
|u1|21,B + |u2|21

)1/2
.
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We then define the bilinear from A : H1
0 (Ω) ∩H2

T (Ω)× Vk,B → R as

A(u, v) = ā(u, v1) + a(u, v2). (3.3)

THEOREM 3.1. The bilinear form A : H1
0 (Ω) ∩ H2

T (Ω) × Vk,B → R is uniformly
continuous with respect to the norm | · |1,T and | · |1,B. Namely there exists a constant C
depending only on the shape regularity of the mesh such that

A(u, v) ≤ C|u|1,T |v|1,B. (3.4)

Proof. For any u ∈ H1
0 (Ω) ∩H2

T (Ω), v = v1 + v2 ∈ Vk,B, v1 ∈ V0,B, v2 ∈Wk,B,

ā(u, v1) ≤
∑

e∈E(B)

‖∇u · n‖0,e‖[v1]‖0,e ≤

 ∑
e∈E(B)

he‖∇u · n‖20,e

1/2

|v1|1,B

≤ C

(∑
τ∈T
|u|21,τ + h2

τ |u|22,τ

)1/2

|v1|1,B = C|u|1,T |v1|1,B.

The last inequality is an application of the trace theorem and the scaling argument. The
constant depends only the shape regularity of the mesh.

For any u ∈ H1(Ω) and v ∈Wk,T , by Cauchy-Schwarz inequality

a(u, v2) ≤ |u|1|v2|1 ≤ |u|1,T |v2|1.

The desired result then follows from the definition of |v|1,B.

3.2. Error analysis. To analyze the error, we need to firstly clarify what do we mean
by the exact solution u of the Poisson equation and specify the right function space for u.

This is not a question for finite element methods. Given an f ∈ L2(Ω), let u ∈ H1
0 (Ω)

be the solution of Poisson equation, denoted by u = −∆−1f , in the sense that

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω). (3.5)

The existence and uniqueness of such a weak solution u ∈ H1
0 (Ω) is a consequence of Riesz

representation theorem.
The following theorem shows that the weak solution of Poisson equation is also varia-

tional exact for the finite volume formulation provided additional smoothness of u.
THEOREM 3.2. For a given f ∈ L2(Ω), let u = −∆−1f satisfy (3.5). If u ∈ H1

0 (Ω) ∩
H2
T (Ω), then

A(u, v) = (f, v) for all v ∈ VB. (3.6)

Proof. Obviously (3.6) holds for v ∈Wk,T . We only need to prove (3.6) for v ∈ V0,B .
By choosing v ∈ C∞0 (Ω) ⊂ H1

0 (Ω) in (3.5), we know −∆u = f in the distribution
sense. Since f ∈ L2(Ω), we conclude −∆u = f holds in L2 sense. In particular, choosing
v =

∑N
i=1 viψi ∈ V0,B, we get

−
N∑
i=1

∫
bi

∆u vi dx =
∫

Ω

fv dx. (3.7)
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For each control volume bi, we consider a triangulation T (bi) of bi given by connecting the
vertices of bi to the node xi which forms a refinement of the mesh T restricted to bi. Then∫

bi

∆udx =
∑

τ∈T (bi)

∫
τ

∆udx =
∑

τ∈T (bi)

∫
∂τ

∇u · n dS =
∑
e∈∂bi

∫
e

∇u · ne dS. (3.8)

In the last step, we use the fact that u ∈ H2
T (bi) and thus the boundary flux is canceled for

interior edges of T (bi). The smoothness assumption u ∈ H2
T (Ω) ensures the trace ∇u · n is

in L2(e). Applying (3.8) to (3.7), we obtain the desired result

−
∑
e∈∂bi

∫
e

∇u · n[v] dS = −
N∑
i=1

∑
e∈∂bi

∫
e

∇u · n vi dS =
∫

Ω

fv dx. (3.9)

To derive the optimal error estimates, besides the continuity and variational exactness,
we need the following uniform inf-sup condition: there exists a constant α depending only
on the shape regularity of T such that for all T ∈ T :

inf
u∈Vk,T

sup
v∈Vk,B

A(u, v)
|u|1,T |v|1,B

≥ α. (3.10)

THEOREM 3.3. Suppose the inf-sup condition (3.10) holds. Given an f ∈ L2(Ω), let
u = −∆−1f satisfy (3.5) and uT ∈ Vk,T satisfy (2.12)-(2.13). If u ∈ H1

0 (Ω) ∩H2
T (Ω), we

then have the quasi-optimal error estimate:

|u− uT |1,T ≤ C inf
vT ∈VT

|u− vT |1,T . (3.11)

Furthermore if u ∈ H1
0 (Ω) ∩Hk+1(Ω), we have optimal order convergence in H1-norm

|u− uT |1 ≤ ChkT ‖u‖k+1, (3.12)

where hT = maxτ∈T diam(τ).
Proof. For any vT ∈ VT , by the inf-sup condition (3.10), exactness of the solution (3.6),

continuity of A, we have

|vT − uT |1,T ≤ α−1 sup
v∈Vk,B

A(vT − uT , v)
|v|1,B

= α−1 sup
v∈Vk,B

A(vT , v)− (f, v)
|v|1,B

= α−1 sup
v∈Vk,B

A(vT − u, v)
|v|1,B

≤ α−1C|u− vT |1,T .

Therefore, for any vT ∈ VT ,

|u− uT |1,T ≤ |u− vT |1,T + |vT − uT |1,T ≤ (1 + α−1C)|u− vT |1,T ,

which leads to (3.11).
Taking vT as the Lagrange interpolation of u in Vk,T and applying the standard interpo-

lation error estimate [16], we get (3.12).
REMARK 3.4. With the uniform bound (1.2) of the coefficient K, the analysis and the

result in Theorem 3.3 can be easily extended to a general tensor K ∈ L∞(Ω). In this case,
the constants in (3.11) and (3.12) will depend on the ratio of a1/a0. The difficulty is to verify
the inf-sup condition (3.10); see Remark 4.3. �
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3.3. Inf-sup condition. To verify the inf-sup condition, we shall make use of the hier-
archical structure of our trial and test function spaces. The following strengthened Cauchy-
Bunyakowski-Schwarz (CBS) inequality [17, 1] is well known in the multigrid community.

THEOREM 3.5. Let M be a symmetric, positive semi-definite 2× 2 block matrix

M =
[
A Bt

B D

]
.

Let U and V be the space of vectors with only non-zero first and second components, respec-

tively, i.e. u ∈ U is of the form u =
[
u1

0

]
and v ∈ V is of the form v =

[
0
u2

]
. If

ker(M) ⊂ U,

then there exists a γ ∈ [0, 1) satisfying

(utMv)2 ≤ γ2(utMu)(vtMv) for all u ∈ U,v ∈ V. (3.13)

In this section, we shall use matrix representation for u ∈ Vk,T and v ∈ Vk,B. Due to
the hierarchical structure, we can identify them with RNL+NW , where NL is the dimension
of the linear finite element space and NW is the dimension of its complement.

To simplify the notation, we use boldface letters, instead of capital letters, to denote the
vector representation of the solution using basis φi, ψi and ωi. For example, for u ∈ Vk,T ,
then u ∈ RNL+NW such that PT u = u, c.f. (2.18) for the definition of the isomorphism
PT . Note that for u1 ∈ V1,T , u1 ∈ RNL+NW with only possible nonzero entries in the first
NL components. With an abuse of notation, we also use u1 to represent a chopped vector in
RNL . Similar notation will be applied to the spaces Vk,B and V0,B.

We denote the stiffness matrix corresponding to the finite element method by

AFE =
[
A Bt

B D

]
.

It is a symmetric and positive definite matrix. The direct application of Theorem 3.5 will
give a constant γ which may depend on the triangulation Th and could tend to 1 as the mesh
parameter h→ 0. We shall use local stiffness matrix to show this is not the case.

To this end, we denote by Vk,τ ,V1,τ and Wk,τ the kth-order finite element space and
its decomposition restricted to one triangle τ , respectively. The function and its vector repre-
sentation will be denoted accordingly by a subscript τ . The bilinear form a(·, ·) restricted to
these subspaces gives the local stiffness matrix for a triangle τ ∈ T

AFEτ =
[
Aτ Btτ
Bτ Dτ

]
.

LEMMA 3.6. Let T = {Th, h ∈ H} be a sequence of shape regular triangulations.
There exists a constant γ ∈ [0, 1) depending only on the shape regularity and the polynomial
order k such that for all T ∈ T and all u = u1 + u2, u1 ∈ V1,T , u2 ∈Wk,T

(1− γ)(ut1Au1 + ut2Du2) ≤ utAFEu ≤ (1 + γ)(ut1Au1 + ut2Du2). (3.14)

Proof. Although the global matrixAFE is symmetric positive definite, the local stiffness
matrixAFEτ is only positive semi-definite. To apply Theorem 3.5, we need to show the kernel
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of AFEτ is contained in V1,τ . This can be easily proved from the fact: a(u, u) = 0 implies
that u is constant in τ .

Then by Theorem 3.5, for any τ ∈ T ⊂ T , there exists a constant γτ ∈ [0, 1) such that

(ut1,τB
t
τu2,τ )2 ≤ γ2

τ (ut1,τAu
t
1,τ )(ut2,τDu2,τ ) for all u1 ∈ V1,τ , u2 ∈Wk,τ . (3.15)

By transferring back to the reference triangle, we see the constant γτ depends continu-
ously on the geometry of the triangle [17]. Let θ1 ≥ θ2 ≥ θ3 be three angles of the triangle
τ . The ordering of angles restrict possible configuration of triangles to the domain Θ on the
θ1 − θ3 (max angle – min angle) plane

Θ = {(θ1, θ3) : θ1 ≥ 60◦, 0 < θ3 ≤ 60◦, θ3 ≤ θ1, 0 < θ2 ≤ θ1, θ3 ≤ θ2.} (3.16)

The shape regularity of triangulations implies all angles have a lower bound denoted by θ0.
Let Θ0 = {(θ1, θ3) ∈ Θ, θ3 ≥ θ0, θ1 ≤ π − 2θ0} be a compact subset of Θ. The in-
equality (3.15) implies that γ(θ1, θ3) ∈ [0, 1) for all (θ1, θ3) ∈ Θ0. Then we take γ =
maxΘ0 γ(θ1, θ3), which also belongs to [0, 1), to get a uniform version of (3.15).

Using standard Cauchy inequality, we get

utτAFEuτ = ut1,τAu1,τ + ut2,τDu2,τ + 2ut1,τB
t
τu2,τ

≤ (1 + γ)(ut1,τAu1,τ + ut2,τDu2,τ ).

Summing over all τ ∈ T , we obtain the second inequality in (3.17). The first inequality is
proved similarly.

We now turn to the matrix obtained from kth-order finite volume methods. Recall that

A =
[
A C
B D

]
.

We define its symmetrization of A as As = (A+At)/2. In matrix form, it is

As =
[
A B̄t

B̄ D

]
,

with B̄ = (B + Ct)/2. Similar notation will be applied to the local matrix in each triangle.
LEMMA 3.7. Let T = {Th, h ∈ H} be a sequence of shape regular triangulations.

If Asτ is positive semi-definite for all τ ∈ T ∈ T , then there exists a constant γ̄ ∈ [0, 1)
depending only on the shape regularity and the polynomial order k such that for all T ∈ T
and all u = u1 + u2, u1 ∈ V1,T , u2 ∈Wk,T

(1− γ̄)(ut1Au1 + ut2Du2) ≤ utAsu ≤ (1 + γ̄)(ut1Au1 + ut2Du2). (3.17)

Proof. Since D is symmetric and positive definite and A has rank 2, we conclude the
kernel of As has dimension one. For any u ∈ Vk,τ , by the definition of the bilinear form

āτ (u, 1) = −
∑

e∈E(B)∩τ

∫
e

∇u · ne[1] dS = 0. (3.18)

Therefore the kernel of As is spanned by the constant vector [1, 1, 1, 0, 0, 0]t which is con-
tained in V1,T . We can then apply Theorem 3.5 and the rest is identical to Lemma 3.6.
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Let us introduce an isomorphism

G = PT P
−1
B : Vk,B → Vk,T , ψi → φi, 1 ≤ i ≤ N.

Then v and Gv share the same vector representation. Since Vk,T ⊂ H1
0 (Ω), we can use

this map to define an H1-norm on Vk,B. It turns out this norm is equivalent to the discrete
H1-norm defined by (3.2).

LEMMA 3.8. There exist constants c1 and c2 depending only the shape regularity of the
mesh such that for any v ∈ Vk,B

c1|v|1,B ≤ |Gv|1 ≤ c2|v|1,B. (3.19)

Proof. By the duality of B and T , in matrix form |v|21,B = vtAGv, where AG is a graph
Laplacian based on the mesh T . It is not difficult to verify that the graph Laplacian AG and
the stiffness matrix A are spectral equivalent [3] and thus (3.19) holds for v ∈ V0,B.

For v = v1 + v2, v1 ∈ V0,B, v2 ∈ Wk,T , Gv = Gv1 + v2 and thus by the definition of
the norm and Lemma 3.6:

|v|21,B = |v1|21,B + |v2|21 ≤ C(|Gv1|21 + |v2|21) ≤ C

(1− γ)2
|Gv|21.

The right inequality in (3.19) is proved similarly.
The following theorem reduces the verification of the inf-sup condition to the positive

semi-definite of the local stiffness matrix.
THEOREM 3.9. Let T = {Th, h ∈ H} be a sequence of shape regular triangulations. If

Asτ is positive semi-definite for all τ ∈ T ∈ T , then there exists a constant α > 0 depending
only on the shape regularity of T and the polynomial order k such that the inf-sup condition

inf
u∈Vk,T

sup
v∈Vk,B

A(u, v)
|u|1,T |v|1,B

≥ α (3.20)

holds.
Proof. For u = u1 + u2 ∈ Vk,T with u1 ∈ V1,T and u2 ∈ Wk,T , we shall choose

v = PBP
−1
T u ∈ Vk,B and prove that

(Au, v) ≥ α|u|1,T |v|1,B, (3.21)

with a constant α depending only on the shape regularity and the polynomial order k. Then
(3.20) follows.

Note that u = v = u1 + u2, i.e., u and v share the same vector representation. In the
matrix notation, we have

utAu = (Atu)tu = utAtu = utAsu.

We then apply Lemma 3.6 and 3.7 to conclude that

utAu = utAsu ≥ (1− γ̄)(ut1Au1 + ut2Du2) ≥ 1− γ̄
1 + γ

utAFEu.

This is equivalent to

(Au, v) ≥ 1− γ̄
1 + γ

|u|1|v|1 ≥ C|u|1,T |v|1,B.

In the last step, we have used the inequalities (3.1) and (3.19).
13



4. Quadratic finite volume method. In this section, we shall consider quadratic finite
volume methods on triangular and rectangular grids in one and two dimensions. Recall that
our quadratic finite volume methods is: find uT ∈ V2,T such that

A(uT , v) = (f, v) for all v ∈ V2,B, (4.1)

(cf. (3.3) for the bilinear formA(·, ·)). The trial space and the test space will be more precise
in the context.

4.1. Quadratic finite volume method in one dimension. Without loss of generality,
we assume Ω = (0, 1). Let T = {0 = x0 < x1 < · · · < xN < xN+1 = 1} be a grid of
Ω and let B = {0 = x0 < x1/2 < x1+1/2 < · · · < xN+1/2 < xN+1 = 1} with xk+1/2 =
(xk + xk+1)/2 be the dual mesh. The quadratic finite element space V2,T ⊂ H1

0 (Ω) is
spanned by piecewise linear nodal basis φi, i = 1, · · · , N at all interior nodes, and quadratic
bubble functions qi, i = 1, · · · , N + 1:

qi =
4(x− xi−1)(xi − x)

(xi − xi−1)2
, i = 1, · · · , N + 1. (4.2)

The test space V2,B will be obtained by replacing V1,T by V0,B.
Since the contribution of the boundary flux from the quadratic bubble function is zero,

i.e., Kq′i(xi−1/2) = 0, we have the special structure C = 0. Using the notation in Section
2.3, the matrix equation is in the form[

Ā 0
B D

] [
ū1

ū2

]
=
[
f̄1

f2

]
. (4.3)

Since C = 0, ū1 and ū2 is decoupled and can be solved as ū1 = Ā−1f̄1 and ū2 =
D−1(f2 − BĀ−1f̄1). The computation of ū2 can be done efficiently since the matrix D is
diagonal and the procedure can be thought as a post-processing of ū1 by solving the residual
equation in the quadratic bubble function spaces.

THEOREM 4.1. Let u be the solution of the variable Poisson equation −(Ku′)′ =
f, u(0) = u(1) = 0 in the weak sense and K ∈ L∞(Ω). For quasi-uniform grids T =
{Th, h ∈ H, h → 0}, when h is small enough, the inf-sup condition (3.10) holds for the
quadratic finite volume method (4.1).

Let uLh = ū1, u
Q
h be the linear or quadratic finite volume approximation, respectively,

and let uLI denote the nodal linear interpolation of u. We have
• the optimal convergence rate for quadratic finite volume approximation

|u− uQh |1 ≤ Ch
2‖u‖3, for all u ∈ H3(Ω);

• the superconvergence of linear finite volume approximation

|uLI − uLh |1 ≤ Ch2‖u‖3, for all u ∈ H3(Ω);

• the optimal convergence rate of linear finite volume approximation in L∞ norm

‖u− uLh‖∞ ≤ Ch2‖u‖3,∞, for all u ∈W 3,∞(Ω).

Proof. IfK is piecewise constant, then Ā = A andB = 0. We then obtain the same stiff-
ness matrix as that from quadratic finite element method. The inf-sup condition for piecewise
constant K is then from that of FEM. For general variable coefficients K ∈ L∞(Ω), we can
consider the system obtained using K̄h, the piecewise constant approximation of K. Since
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limh→0 ‖K − K̄h‖ → 0, when h is sufficiently small, the inf-sup condition will hold by the
perturbation argument; see [29] for details. The optimal convergence rate of uQh in H1 norm
then follows easily.

Since C = 0, ū1 is also the solution of linear finite volume method. We can write
uLh = ū1 and uQh = ū1 + ū2. Let uQI , u

L
I denote the quadratic interpolation and linear

interpolation of u respectively, and let eQh = uQI −u
Q
h , e

L
h = uLI −uLh . We have the following

decomposition

eQh = eLh + (eQh − e
L
h ). (4.4)

Due to the special feature uQh − uLh ∈ W2,T , (eQh − eLh ) ∈ W2,T and (4.4) is a hierarchical
decomposition. Since V1,T is orthogonal to W2,T in the H1 semi-inner product, we obtain

|uLI − uLh |1 = |eLh |1 ≤ |e
Q
h |1 ≤ Ch

2‖u‖3.

Note that this superconvergence result does not use the uniformity of the mesh T .
The optimal L∞ norm estimate for uLh follows from:
• the the embedding theorem ‖uLI − uLh‖∞ ≤ C|uLI − uLh |1;
• the triangle inequality ‖u− uLh‖∞ ≤ ‖uLI − uLh‖∞ + ‖u− uLI ‖∞;
• and the interpolation error estimate ‖u− uLI ‖∞ ≤ Ch3‖u‖3,∞.

4.2. Quadratic finite volume method on triangular grids. In this subsection, we shall
provide explicit formula for quadratic finite volume methods for Poisson equation on 2-D
triangular grids and verify the positive semi-definiteness condition.

We first compute the local stiffness matrix in one triangle. Let θi denote the angle of the
triangle at the vertex xi for i = 1, 2, 3, and index the edge opposite to vertex xi by ei. Let
λi be the barycentric coordinates corresponding to xi which is the basis of linear polynomial
space. Then the quadratic bubble function on the edge xixj is given by 4λiλj . Following
[24, 2], we introduce the notation

ci = cot θi, i = 1 to 3, and c =
3∑
i=1

ci. (4.5)

By direct computation, we obtain the corresponding matrices:

A =
1
2

c2 + c3 −c3 −c2
−c3 c3 + c1 −c1
−c2 −c1 c1 + c2

 , B = −4
3
A, and D =

4
3

 c −c3 −c2
−c3 c −c1
−c2 −c1 c

 .
We shall compute the matrix C for two typical choices of control volumes.

Type A control volumes. In this case, we connect the centroid to the middle points of
edges. See Figure 1 (a). The area of each control volume is one third of the area of the
triangle. We list the matrix C below:

C = −



−1
3
c1 +

1
2
c2 +

1
2
c3

1
6
c2 −

1
2
c3

1
6
c3 −

1
2
c2

1
6
c1 −

1
2
c3

1
2
c1 −

1
3
c2 +

1
2
c3

1
6
c3 −

1
2
c1

1
6
c1 −

1
2
c2

1
6
c2 −

1
2
c1

1
2
c1 +

1
2
c2 −

1
3
c3


. (4.6)
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When c1 = c2 = c3 = cot 60◦, i.e., the triangle is equilateral, it is simplified as C = B/2.
For this special case, we have

As =
3
4
AFE +

1
4

[
A 0
0 D

]
,

which is symmetric and positive definite and satisfy the inf-sup condition. Optimal error
estimates then follows for this special case.

Type B control volumes. Without loss of generality, we assume θ1 is the largest angle.
For each triangle, we divide it into three parts by connecting middle points of e2 and e3 to the
middle point of e1. See Figure 1 (b). We list the matrix C below:

C = −1
2

c2 + c3 − 2c1 −c2 − c3 −c2 − c3
c1 − c3 c1 + c3 c3 − c1
c1 − c2 c2 − c1 c1 + c2

 . (4.7)

FIG. 4.1. The second eigenvalue of symmetrized local stiffness matrix of quadratic FVM: type A dual mesh.
x-axis: maximal angle θ1; y-axis: minimal angle θ3.

FIG. 4.2. The second eigenvalue of symmetrized local stiffness matrix of quadratic FVM: type B dual. x-axis:
maximal angle θ1; y-axis: minimal angle θ3

For triangles of general shape, we use the following procedure to verify the positive
semi-definite of Asτ . Suppose the eigenvalues of the symmetric matrix Asτ are sorted by
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µ1 ≤ µ2 ≤ · · · ≤ µ6. From (3.18), we know zero is an eigenvalue of Asτ . We compute the
second eigenvalue µ2. If µ2 > 0, then µ1 = 0 and thus Asτ is positive semi-definite.

Obviously from the formulation of the local stiffness matrix, µ2 depends continuously
on angles of the triangle τ . Without loss of generality, we assume θ1 ≥ θ2 ≥ θ3 and consider
the domain Θ defined in (3.16). We discretize the rectangular domain (0, 180◦) × (0, 180◦)
on the θ1 − θ3 plane by a uniform grid with mesh size 0.1 and compute µ2(θ1, θ3) at grid
points. By the ordering of angles, we restrict our computation to the domain Θ and set µ2 = 0
outside of Θ.

The contour of the computed µ2 is plotted in Fig. 4.1 and 4.2. We say the triangle
is admissible if µ2(τ) > 0. From Fig. 4.1 and 4.2, it is evident that when the maximal
angle is less than a threshold θ∗1 and the minimal angle is greater than θ∗3 , then the triangle
is admissible. Numerical computation shows that for both Type A and B dual mesh, θ∗1 =
151.6◦ which is consistent with the maximal angle condition 151.56◦ obtained in [23] (since
our computation is one digit accurate after the decimal point). We also observe that type B
dual mesh requires less restriction on the minimal angle.

We summarize the convergence of our new quadratic FVM in the following theorem.
THEOREM 4.2. Suppose every triangle in the triangulation T ∈ T is admissible. Then

the inf-sup condition (3.10) of the quadratic FVM (4.1) holds with a constant depending only
on the shape regularity of T .

Consequently, given an f ∈ L2(Ω), let u = −∆−1f satisfy (3.5) and uT ∈ Vk,T satisfy
(2.12)-(2.13). If u ∈ H1

0 (Ω) ∩H2
T (Ω), we have the quasi-optimal error estimate:

|u− uT |1,T ≤ C inf
vT ∈VT

|u− vT |1,T . (4.8)

Furthermore if u ∈ H1
0 (Ω) ∩H3(Ω), we have optimal order convergence in H1-norm

|u− uT |1 ≤ Ch2
T ‖u‖3. (4.9)

The convergence analysis on the quadratic finite volume method presented in the book
[22] (Chapter 3, page 148) requires stronger geometrical conditions: the maximum angle of
each triangle is not greater than π/2, and that the ratio of the lengths of the two sides of
the maximum angle is in the range [

√
2/3,

√
3/2]. In [23], the maximal angle condition is

relaxed to 151.56◦. But the proof is complicated and not easy to verify since the key steps
are skipped. In a recent work [29], the angle condition is improved.

Quadratic finite volume methods discussed in these works [22, 29, 23], however, requires
a control volume for each quadratic bubble basis and the local stiffness matrix is more com-
plicated. Instead in our new approach the local stiffness matrix can be easily modified from
hierarchical basis finite element code.

The angle condition for each triangle is a sufficient condition to prove the inf-sup condi-
tion and is by no means a necessary condition. There could be cancelation when assembling
local stiffness matrix to a big one. In this sense, if there are only few number of ‘bad triangles’
are not admissible, the scheme may still have optimal convergent rate. The angle condition
for the error analysis may not be a constrain for practical computation.

REMARK 4.3. WhenK is piecewise constant, we can write∫
τ

K∇u · ∇v dx =
∫
τ

(K1/2∇u) · (K1/2∇v) dx =
1

det(K1/2)

∫
τ̃

∇̃ũ · ∇̃ṽ dx̃,

where x̃ = K1/2x. Therefore similar results will hold when the transformed triangle τ̃ is
admissible. We refer to [13] for a method on generating quasi-uniform grids under general
Riemannian metrics.
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For variable coefficients, results hold by assuming h is small enough; see the argument
in Theorem 4.1. �

4.3. Quadratic finite volume method on rectangular grids. In this subsection, we
shall consider a biquadratic finite volume method for solving Poisson equation over rectan-
gular grids. The convergence analysis for bilinear finite volume methods on rectangular grids
can be found at [27, 6].

For the simplicity of exposition, we consider homogenous Dirichlet boundary condition
and assume Ω = (0, 1) × (0, 1). The domain is discretized by a non-uniform mesh T =
Tx ⊗ Ty , which is the Cartesian product of the one-dimensional meshes

Tx = {xi, i = 0, · · · ,M : x0 = 0, xi − xi−1 = hi, xM = 1},
Ty = {yj , j = 0, · · · , N : y0 = 0, yj − yj−1 = kj , yN = 1}.

We choose the trial space V2,T as 8-nodes biquadratic finite element space of H1
0 (Ω).

Let V1,T be the bilinear finite element space. For a rectangle τi,j = (xi, xi+1) × (yj , yj+1)
in T , we label the four nodes vi, i = 1 : 4 and four middle points on edges in Figure 4.3.
For a point (x, y) ∈ τ , it can be denoted by barycentric coordinates in x and y direction as
(x, y) = (λx1 , λ

x
2 , λ

y
1, λ

y
4), where λxi (x) is a linear function of x such that λxi (vj) = δji for

i, j = 1, 2 and λyi (y) is a linear function of y such that λyi (vj) = δji for i, j = 1, 4. Then the
hierarchical basis in τ can be written as

φ1 = λx1λ
y
1, φ2 = λx2λ

y
1, φ3 = λx2λ

y
4, φ4 = λx1λ

y
4,

ω5 = 4λx1λ
x
2λ

y
1, ω6 = 4λy1λ

y
4λ

x
2 , ω7 = 4λx1λ

x
2λ

y
4, ω8 = 4λy1λ

y
4λ

x
1 .

Restricted to one element τ , the space is V2,τ = V1,τ ⊕W2,τ , where

V1,τ = span{φ1, φ2, φ3, φ4}, and W2,τ = span{ω5, ω6, ω7, ω8}.

1 2

34

5

6

7

8

hi

kj

FIGURE 1. Patches are similar

1

FIG. 4.3. Q8 biquadratic element

For each vertex (xi, yj) ∈ T , the control volume is choose as

bij = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2),

where xi−1/2 = (xi + xi−1)/2, xi+1/2 = (xi + xi+1)/2, yi−1/2 = (yi + yi−1)/2, yi+1/2 =
(yi + yi+1)/2. The dual mesh B = {bij : (xi, yj) is an interior node of T } and the test space
will be V2,B = V0,B + W2,B.

The convergence could be analyzed similarly using the framework developed for tri-
angular grids. For rectangular grids, however, we have a more direct way to establish the
continuity and stability. We shall sketch the proof below and skip details.
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The following lemma can be found in [15]. Here recall that G : V2,B → V2,T is the
isomorphism between the trial and test spaces.

LEMMA 4.4. For any u1 ∈ V1,T , v1 ∈ V0,B, we have

−
∑

e∈E(B)

∫
e

∇u1 · ne[v1]dS =
∫

Ω

∇u1 · ∇(Gv1) dx+Q(u1, v1), (4.10)

where

Q(u1, v1) =
1
24

∑
τij∈T

(h3
i kj + hik

3
j )
∂2u1

∂x∂y

∂2(Gv1)
∂x∂y

.

By direct computations we have the following identity.
LEMMA 4.5. In one rectangle τ , we have

−
∫
∂bi

∂ωj
∂n

dS =
∫
τ

∇ωj · ∇φi dxdy, i = 1, · · · , 4, j = 5, · · · , 8. (4.11)

We then obtain a symmetric quadratic finite volume methods with the following matrix
formulation for the stiffness matrix:

A =
[
Ā Bt

B D

]
.

Comparing with the stiffness matrix of the quadratic finite element

AFE =
[
A Bt

B D

]
,

the implementation of our quadratic finite volume methods can be easily modified from
quadratic finite element methods. The resulting matrix is symmetric and thus can borrow
efficient iterative methods designed for finite element methods.

THEOREM 4.6. The bilinear form A(·, ·) is symmetric, positive definite, and continuous
in the sense that for any u ∈ V2,T , v ∈ V2,B

A(u, v) = A(Gv,G−1u), (4.12)

A(u,G−1u) ≥ |u|21, (4.13)
A(u, v) ≤ C|u|1|Gv|1, (4.14)

where the constant in (4.14) depending only the aspect ratio of rectangles.
Proof. By (4.10) and (4.11), for u = u1 + u2 ∈ V2,T , v = v1 + v2 ∈ V2,B, we have

A(u, v) = AFE(u,Gv) +Q(u1, v1).

Then (4.12) is from the symmetric of Q(·, ·) and (4.13) is consequence of Q(u1, u1) ≥ 0.
Using the inverse inequality, it is easy to show (c.f [15])

Q(u1, v1) ≤ C|u1|1|Gv1|1.

Then using the strengthened Cauchy inequality, we get |u1| ≤ C|u|1 with a constant C
depending only on the aspect ratio of rectangles. Using the continuity ofAFE(·, ·), we obtain
(4.14).
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The variational exactness and error estimate can be proved similarly. We summarize
results in the following theorem.

THEOREM 4.7. Let T = {Th, h ∈ H} be a sequence of shape regular rectangular
grids. Given an f ∈ L2(Ω), let u = −∆−1f satisfy (3.5) and uT ∈ V2,T satisfy (4.1). If
u ∈ H1

0 (Ω) ∩H2
T (Ω), we have the quasi-optimal error estimate:

|u− uT |1,T ≤ C inf
vT ∈VT

|u− vT |1,T . (4.15)

Furthermore if u ∈ H1
0 (Ω) ∩H3(Ω), we have optimal order convergence in H1-norm

|u− uT |1 ≤ Ch2
T ‖u‖3. (4.16)

5. Numerical Experiment. In this section, we shall present a numerical example to
support our theoretical results. Let Ω = (−1, 1) × (−1, 1)\([0, 1] × [−1, 0]) be a L-shape
domain and consider the Poisson equation

−∆u = 0, in Ω u = uD on ∂Ω.

We choose uD and f such that the exact solution u in polar coordinates is

u(r, θ) = r
2
3 sin

2
3
θ.

It is well known that the solution presents a singularity at the origin. Mesh adaptation
based on the procedure for adaptive finite element methods (AFEMs) is applied to get a
suitable locally refined mesh for quadratic elements. See Fig. 5.1 for an example of such a
grid. We refer to [14] and references therein for the detailed description of AFEM.

FIGURE 1. Mesh

1

FIG. 5.1. L-shape domain and a locally refined mesh

We replace the quadratic finite element approximation in AFEM by quadratic finite vol-
ume approximation with type B dual mesh. We plot the error in H1 norm. Since the mesh
is not quasi-uniform, we use N = #dof , the number of degree of freedom, to measure the
convergent rate. In two dimensions, h2 = O(N−1) for quasi-uniform grids. From Fig. 5.2,
it is evident that it achieves optimal order in H1 norm. The simulation is implemented using
iFEM [11].

6. Conclusion and future work. In this paper, we have developed a new class of high
order finite volume methods using the hierarchical high order finite element methods. Our
new method is easy to implement comparing with other quadratic finite volume methods. We
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FIG. 5.2. Error of a quadratic finite volume approximation in H1 norm

also verified the inf-sup condition for our quadratic finite volume methods on two dimensional
triangular and rectangular grids and thus obtain optimal convergence rate in H1 norm.

We showed that in two dimensional rectangular grids, our new quadratic finite volume
method results in a symmetric matrix. We note that, however, the resulting matrix for triangu-
lar mesh is non-symmetric. In general for variable coefficients, the system for both triangular
and rectangular grids are non-symmetric.

We have not discussed efficient iterative solvers for the resulting non-symmetric matrix.
Since the matrix is not far away from that from finite element methods, we expect existing
multilevel methods for solving linear algebraic equation developed in finite element methods
will help.

Most existing finite volume methods of Stokes equations are restricted to lower order
pairs. With our new quadratic finite volume discretization of the Laplacian operator, we will
be able to examine the P2–P1 or Q2–Q1 Taylor-Hood type elements for the finite volume
approximation of Stokes equations. We shall report our finding in another work [12].
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